[1]Zhang, N., Deng, C., Tao, S., Guo, L., & Cheng, Y. (2020). Bifunctional oxygen electrodes with gradient hydrophilic/hydrophobic reactive interfaces for metal air flow batteries. Chemical Engineering Science, 115795. doi:10.1016/j.ces.2020.115795[2]Cheng, Y., Zhou, S., Wang, R., Gao, X., Zhang, Y., & Xiang, Z. (2021). A superior unitary oxygen electrode with accelerated mass transfer and highly exposed active sites for rechargeable air-based batteries. Journal of Power Sources, 488, 229468. doi:10.1016/j.jpowsour.2021.22946[3]Weng, G.-M., Li, Z., Cong, G., Zhou, Y., & Lu, Y.-C. (2017). Unlocking the capacity of iodide for high-energy-density zinc/polyiodide and lithium/polyiodide redox flow batteries. Energy & Environmental Science, 10(3), 735–741. doi:10.1039/c6ee03554j[4]Jian, Q. P., Wu, M. C., Jiang, H. R., Lin, Y. K., & Zhao, T. S. (2021). A trifunctional electrolyte for high-performance zinc-iodine flow batteries. Journal of Power Sources, 484, 229238. doi:10.1016/j.jpowsour.2020.22923[5]Zhao, Z., Zhao, J., Hu, Z., Li, J., Li, J., Zhang, Y., Cui, G. (2019). Long-life and Deeply Rechargeable Aqueous Zn Anodes Enabled by Multifunctional Brightener-Inspired Interphase. Energy & Environmental Science. doi:10.1039/c9ee00596j[6]Zhao, K., Wang, C., Yu, Y., Yan, M., Wei, Q., He, P., … Mai, L. (2018). Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 5(16), 1800848. doi:10.1002/admi.201800848[7]Zhang, Y., Wu, Y., You, W., Tian, M., Huang, P., Zhang, Y., … Liu, N. (2020). A deeply rechargeable and hydrogen-evolution-suppressing zinc anode in alkaline aqueous electrolyte. Nano Letters. doi:10.1021/acs.nanolett.0c01776